A vertical spring with force constant $k$ is fixed on a table. A ball of mass $m$ at a height $h$ above the free upper end of the spring falls vertically on the spring so that the spring is compressed by a distance $d$. The net work done in the process is
$mg\left( {h + d} \right) - \frac{1}{2}\,k{d^2}$
$mg\left( {h - d} \right) - \frac{1}{2}\,k{d^2}$
$mg\left( {h - d} \right) + \frac{1}{2}\,k{d^2}$
$mg\left( {h + d} \right) + \frac{1}{2}\,k{d^2}$
Two blocks $A$ and $B$ of masses $1\,\,kg$ and $2\,\,kg$ are connected together by a spring and are resting on a horizontal surface. The blocks are pulled apart so as to stretch the spring and then released. The ratio of $K.E.s$ of both the blocks is
If the momentum of a body increases by $0.01\%$, its kinetic energy will increase by ........... $\%$
A boy holds a uniform chain of length $2\,m$ which is kept on a smooth table such that a length of $60\,cm$ hangs freely from the edge of the table. The total mass of the chain is $4\,kg$. What is the work done in pulling the entire chain on the table .............. $\mathrm{J}$
A shell is fired from a canon with a velocity $V$ at an angle $\theta$ with the horizontal direction. At the highest point in its path, it explodes into two pieces of equal masses. One of the pieces come to rest. The speed of the other piece immediately after the explosion is
The work done by a force $\vec F\, = \,( - \,6{x^3}\,\hat i)N$ , in displacing a particle from $x = 4\,m$ to $x = -\,2\,m$ is .............. $\mathrm{J}$