A viscous fluid is flowing through a cylindrical tube. The velocity distribution of the fluid is best represented by the diagram
None of this
A spherical solid ball of volume $V$ is made of a material of density $\rho_1$ . It is falling through a liquid of density $\rho_2 (\rho_2 < \rho_1 )$. Assume that the liquid applies a viscous force on the ball that is proportional to the square of its speed $v$, i.e., $F_{viscous}= -kv^2 (k >0 )$,The terminal speed of the ball is
On which factors terminal velocity depends ? Explain.
Velocity of water in a river is
Sixty four spherical rain drops of equal size are falling vertically through air with terminal velocity $1.5\, m/s$. All of the drops coalesce to form a big spherical drop, then terminal velocity of big drop is ........... $m/s$
A raindrop with radius $R=0.2\, {mm}$ fells from a cloud at a height $h=2000\, {m}$ above the ground. Assume that the drop is spherical throughout its fall and the force of buoyance may be neglected, then the terminal speed attainde by the raindrop is : (In ${ms}^{-1}$)
[Density of water $f_{{w}}=1000\;{kg} {m}^{-3}$ and density of air $f_{{a}}=1.2\; {kg} {m}^{-3}, {g}=10 \;{m} / {s}^{2}$ Coefficient of viscosity of air $=18 \times 10^{-5} \;{Nsm}^{-2}$ ]