A viscous fluid is flowing through a cylindrical tube. The velocity distribution of the fluid is best represented by the diagram

  • A
    59-a58
  • B
    59-b58
  • C
    59-c58
  • D

    None of this

Similar Questions

A cylindrical vessel filled with water is released on an inclined surface of angle $\theta$ as shown in figure.The friction coefficient of surface with vessel is $\mu( < \tan \theta)$.Then the contact angle made by the surface of water with the incline will be

A liquid drop of mass $m$ and radius $r$ is falling from great height. Its velocity is proportional to ............

A solid sphere, of radius $R$ acquires a terminal velocity $\nu_1 $ when falling (due to gravity) through a viscous fluid having a coefficient of viscosity $\eta $. The sphere is broken into $27$ identical solid spheres. If each of these spheres acquires a terminal velocity, $\nu_2$, when falling through the same fluid, the ratio $(\nu_1/\nu_2)$ equals

  • [JEE MAIN 2019]

A spherical ball of density $\rho$ and radius $0.003$ $m$ is dropped into a tube containing a viscous fluid filled up to the $0$ $ cm$ mark as shown in the figure. Viscosity of the fluid $=$ $1.260$ $N.m^{-2}$ and its density $\rho_L=\rho/2$ $=$ $1260$ $kg.m^{-3}$. Assume the ball reaches a terminal speed by the $10$ $cm$ mark. The time taken by the ball to traverse the distance between the $10$ $cm$ and $20$ $cm$ mark is

( $g$ $ =$ acceleration due to gravity $= 10$ $ ms^{^{-2}} )$

There is a $1\, mm$ thick layer of glycerine between a flat plate of area $100\, cm^2$ and a big plate. If the coefficient of viscosity of glycerine is $1.0\, kg\, (m-s)$, then ....... $N$ force is required to move the plate with a velocity of $7\, cm/s$ .