किसी बेलनाकार नलिका से एक श्यान द्रव बह रहा है। द्रव के वेग वितरण को उचित रूप से निम्न चित्र द्वारा दर्शाया जा सकता है
इनमें से कोई नहीं
एक गेंद जिसकी त्रिज्या $r$ व घनत्व है, गुरुत्व के अधीन मुक्त रूप से गिर रही है। $h $ ऊँचाई से गिरने के पश्चात् वह जल में प्रवेश करती है। जल में प्रवेश करने के पश्चात् भी उसकी चाल नियत बनी रहती है। जल की श्यानता हो, तो h का मान होगा
समान द्रव्यमान के दो लघु गोलीय धातु गैदें $1\;mm$ तथा $2 \;mm$ त्रिज्या तथा $\rho_1$ व $\rho_2\; (\rho_1 = 8\rho_2)$ घनत्व के पदार्थों की बनी हुई है। ये एक श्यान माध्यम में ऊर्ध्वाधर गिरती है जिनका श्यानता गुणांक बराबर है तथा जिसका घनत्व $0.1\rho_2$ है। इनके सीमांत वेगो का अनुपात होगा
कमरे के ताप पर किसी तेल की टंकी में गिर रही $5\,mm$ त्रिज्या वाली किसी ताँबे की गेंद का सीमांत वेग $10\, cm\,s ^{-1}$ है। यदि कमरे के ताप पर तेल की श्यानता $0.9\,kg\,m ^{-1}\,s ^{-1}$ है, तो. आरोपित श्यान बल है :
उच्च श्यानता वाले द्रव के किसी लम्बे स्तम्भ में एक गोलाकार गेंद गिरायी जाती हैं। समय $( t )$ के फलन के रूप में गेंद की चाल $(v)$ को, दिखाए गए अभिरेख में कौन सा वक्र निरूपित करता है ?
समान त्रिज्या की दो बूँदें वायु में गिर रही हैं। उनके क्रांतिक वेग $5 cm/sec$ हैं। यदि बूँदें परस्पर जुड़ जायें, तो क्रांतिक वेग होगा