A wire is suspended by one end. At the other end a weight equivalent to $20\, N$ force is applied. If the increase in length is $1.0\, mm,$ the ratio of the increase in energy of the wire to the decrease in gravitational potential energy when load moves downwards by $1\, mm,$ will be

  • A

    $1$

  • B

    $\frac{1}{4}$

  • C

    $\frac{1}{3}$

  • D

    $\frac{1}{2}$

Similar Questions

The ratio of Young's modulus of the material of two wires is $2 : 3.$ If the same stress is applied on both, then the ratio of elastic energy per unit volume will be

$K$ is the force constant of a spring. The work done in increasing its extension from ${l_1}$ to ${l_2}$ will be

A uniform metal rod of $2\, mm^2$ cross section fixed between two walls is heated from $0\,^oC$ to $20\,^oC$. The coefficient of linear expansion of rod is $12\times10^{-6}/^oC$. Its Young's modulus of elasticity is $10^{11} \,N/m^2$. The energy stored per unit volume of rod will be ....... $J/m^3$

A $5$ metre long wire is fixed to the ceiling. A weight of $10\, kg$ is hung at the lower end and is $1$ metre above the floor. The wire was elongated by $1\, mm$. The energy stored in the wire due to stretching is ......... $ joule$

A brass rod of cross-sectional area $1\,c{m^2}$ and length $0.2\, m$ is compressed lengthwise by a weight of $5\, kg$. If Young's modulus of elasticity of brass is $1 \times {10^{11}}\,N/{m^2}$ and $g = 10\,m/{\sec ^2}$, then increase in the energy of the rod will be