A wire of length $2\,L$ is made by joining two wires $A$ and $B$ of same lengths but different radii $r$ and $2r$ and made of the same material. It is vibrating at a frequency such that the joint of the two wires forms a node. If the number of antinodes in wire $A$ is $p$ and that in $B$ is $q$ then the ratio $p : q$ is

821-1178

  • [JEE MAIN 2019]
  • A

    $1 : 4$

  • B

    $1 : 2$

  • C

    $3 : 5$

  • D

    $4 : 9$

Similar Questions

Standing waves are produced in a $10 \;m$ long stretched string. If the string vibrates in $5$ segments and the wave velocity is $20\; m/s$, the frequency is ... $Hz$

  • [AIIMS 1998]

A block $\mathrm{M}$ hangs vertically at the bottom end of a uniform rope of constant mass per unit length. The top end of the rope is attached to a fixed rigid support at $O$. A transverse wave pulse (Pulse $1$ ) of wavelength $\lambda_0$ is produced at point $O$ on the rope. The pulse takes time $T_{O A}$ to reach point $A$. If the wave pulse of wavelength $\lambda_0$ is produced at point $A$ (Pulse $2$) without disturbing the position of $M$ it takes time $T_{A 0}$ to reach point $O$. Which of the following options is/are correct?

(image)

[$A$] The time $\mathrm{T}_{A 0}=\mathrm{T}_{\mathrm{OA}}$

[$B$] The velocities of the two pulses (Pulse $1$ and Pulse $2$) are the same at the midpoint of rope.

[$C$] The wavelength of Pulse $1$ becomes longer when it reaches point $A$.

[$D$] The velocity of any pulse along the rope is independent of its frequency and wavelength.

  • [IIT 2017]

In an experiment with sonometer when a mass of $180\,g$ is attached to the string, it vibrates with fundamental frequency of $30\,Hz$. When a mass $m$ is attached, the string vibrates with fundamental frequency of $50\,Hz$. The value of $m$ is $.........\,g$.

  • [JEE MAIN 2023]

A transverse wave is passing through a stretched string with a speed of $20\  m/s.$ The tension in the string is $20\  N$. At a certain point $P$ on the string, it is observed that energy is being transferred at a rate of $40 \ mW$ at a given instant. Find the speed of point $P$.

A wire of length one metre under a certain initial tension emits a sound of fundamental frequency $256 \,Hz$. When the tension is increased by $1 \,kg$ wt, the frequency of the fundamental node increases to $320 \,Hz$. The initial tension is ........... $kg \,wt$