A wire of length $L$ and radius $r$ is clamped rigidly at one end. When the other end of the wire is pulled by a force $f$, its length increases by $l$. Another wire of same material of length $2 L$ and radius $2 r$ is pulled by a force $2 f$. Then the increase in its length will be
$2\,l$
$l$
$4 \ l$
$l / 2$
Two separate wires $A$ and $B$ are stretched by $2 \,mm$ and $4\, mm$ respectively, when they are subjected to a force of $2\, N$. Assume that both the wires are made up of same material and the radius of wire $B$ is 4 times that of the radius of wire $A$. The length of the wires $A$ and $B$ are in the ratio of $a : b$. Then $a / b$ can be expressed as $1 / x$ where $x$ is
The length of wire, when $M_1$ is hung from it, is $I_1$ and is $I_2$ with both $M_1$ and $M_2$ hanging. The natural length of wire is ........
A uniform rod of length $L$ has a mass per unit length $\lambda$ and area of cross-section $A$. If the Young's modulus of the rod is $Y$. Then elongation in the rod due to its own weight is ...........
A structural steel rod has a radius of $10 \;mm$ and a length of $1.0 \;m$. A $100 \;kN$ force stretches it along its length. Calculate $(a)$ stress, $(b)$ elongation, and $(c)$ strain on the rod. Young's modulus, of structural steel $1 s 2.0 \times 10^{11} \;N m ^{-2}$
Four identical hollow cylindrical columns of mild steel support a big structure of mass $50,000 \;kg$. The inner and outer radii of each column are $30$ and $60\; cm$ respectively. Assuming the load distribution to be uniform, calculate the compressional strain of each column.