- Home
- Standard 11
- Physics
11.Thermodynamics
medium
Adiabatic modulus of elasticity of a gas is $2.1 \times {10^5}N/{m^2}.$ What will be its isothermal modulus of elasticity $\left( {\frac{{{C_p}}}{{{C_v}}} = 1.4} \right)$
A
$1.8 \times {10^5}N/{m^2}$
B
$1.5 \times {10^5}N/{m^2}$
C
$1.4 \times {10^5}N/{m^2}$
D
$1.2 \times {10^5}N/{m^2}$
Solution
(b)$\frac{{{\rm{Adiabatic elasticicity}}\;({E_\varphi })}}{{{\rm{Isothermal}}\;{\rm{elasticicity}}\;({E_\theta })}} = \gamma $
==>${E_\theta } = \frac{{{E_\varphi }}}{\gamma }$
==> ${E_\theta } = \frac{{2.1 \times {{10}^5}}}{{1.4}}$$ = 1.5 \times {10^5}N/{m^2}$
Standard 11
Physics