11.Thermodynamics
medium

The volume of $1\; mole$ of an ideal gas with the adiabatic exponent $\gamma$ is changed according to the relation $V=\frac bT$ where $b =$ constant. The amount of heat absorbed by the gas in the process if the temperature is increased by $\triangle T$ will be

A

$\frac{R}{{\gamma  - 1}} \Delta T$

B

$\left( {\frac{{2 - \gamma }}{{\gamma  - 1}}} \right)R  \Delta T$

C

$\;\frac{{R \Delta T}}{{\gamma  - 1}}$

D

$\left( {\frac{{1 - \gamma }}{{\gamma  + 1}}} \right)R \Delta T$

(NEET-2017)

Solution

$V=\frac bT$

$VT=$constant

$V(p V)=$ constant

$\therefore p V^{2}=$ constant

In the process $p V^{x}=$ constant, molar heat capacity is

$C=\frac{R}{\gamma-1}+\frac{R}{1-x}$

Here, $x=2$

$\therefore C=\frac{R}{\gamma-1}+\frac{R}{1-2}=\left(\frac{2-\gamma}{\gamma-1}\right) R$

Now, $Q=n C \Delta T$

$=(1)\left(\frac{2-\gamma}{\gamma-1}\right) R \Delta T$

$=\left(\frac{2-\gamma}{\gamma-1}\right) R \Delta T$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.