After charging a capacitor the battery is removed. Now by placing a dielectric slab between the plates :-
The potential difference between the plates and the energy stored will decrease but the charge on plates will remain same
the charge on the plates will decrease and the potential difference between the plates will increase
the potential difference between the plates will increase and energy stored will decrease but the charge on the plates will remain same
the potential difference, energy stored and the charge will remain unchanged.
A capacitor has some dielectric between its plates and the capacitor is connected to a $\mathrm{D.C.}$ source. The battery is now disconnected and then the dielectric is removed. State whether the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase, decrease or remain constant.
In a parallel plate capacitor set up, the plate area of capacitor is $2 \,m ^{2}$ and the plates are separated by $1\, m$. If the space between the plates are filled with a dielectric material of thickness $0.5\, m$ and area $2\, m ^{2}$ (see $fig.$) the capacitance of the set-up will be $.........\, \varepsilon_{0}$
(Dielectric constant of the material $=3.2$ ) and (Round off to the Nearest Integer)
An air capacitor of capacity $C = 10\,\mu F$ is connected to a constant voltage battery of $12\,V$. Now the space between the plates is filled with a liquid of dielectric constant $5$. The charge that flows now from battery to the capacitor is......$\mu C$
The radii of the inner and outer spheres of a condenser are $9\,cm$ and $10\,cm$ respectively. If the dielectric constant of the medium between the two spheres is $6$ and charge on the inner sphere is $18 \times {10^{ - 9}}\;coulomb$, then the potential of inner sphere will be, if the outer sphere is earthed........$volts$
A parallel plate capacitor $\mathrm{C}$ with plates of unit area and separation $\mathrm{d}$ is filled with a liquid of dielectric constant $\mathrm{K}=2$. The level of liquid is $\frac{\mathrm{d}}{3}$ initially. Suppose the liquid level decreases at a constant speed $V,$ the time constant as a function of time $t$ is Figure: $Image$