1.Relation and Function
hard

Among the relations $S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$ And $T =\left\{( a , b ): a , b \in R , a ^2- b ^2 \in Z \right\}$,

A

$S$ is transitive but $T$ is not

B

$T$ is symmetric but $S$ is not

C

Neither $S$ nor $T$ is transitive

D

Both $S$ and $T$ are symmetric

(JEE MAIN-2023)

Solution

For relation $T=a^2-b^2=-I$

Then,$(b, a)$ on relation $R$

$\Rightarrow b ^2- a ^2=- I$

$\therefore T \text { is symmetric }$

$S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$

$2+\frac{ a }{ b } > 0 \Rightarrow \frac{ a }{ b } > -2, \Rightarrow \frac{ b }{ a } < \frac{-1}{2}$

If $(b, a) \in S$ then

$2+\frac{b}{a}$ not necessarily positive

$\therefore S$ is not symmetric

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.