1.Relation and Function
hard

સંબંધો $S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$ અને $T =\left\{( a , b ): a , b \in R , a ^2- b ^2 \in Z \right\}$, માંથી

A

$S$ પરંપરિત છે પરંતુ $T$ નથી.

B

$T$ સંમિત છે પરંતુ $S$ નથી.

C

$S$ કે $T$ કોઈપણ પરંપરિત નથી.

D

$S$ અને $T$ બંને સંમિત છે.

(JEE MAIN-2023)

Solution

For relation $T=a^2-b^2=-I$

Then,$(b, a)$ on relation $R$

$\Rightarrow b ^2- a ^2=- I$

$\therefore T \text { is symmetric }$

$S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$

$2+\frac{ a }{ b } > 0 \Rightarrow \frac{ a }{ b } > -2, \Rightarrow \frac{ b }{ a } < \frac{-1}{2}$

If $(b, a) \in S$ then

$2+\frac{b}{a}$ not necessarily positive

$\therefore S$ is not symmetric

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.