સંબંધો $S =\left\{( a , b ): a , b \in R -\{0\}, 2+\frac{ a }{ b } > 0\right\}$ અને $T =\left\{( a , b ): a , b \in R , a ^2- b ^2 \in Z \right\}$, માંથી
$S$ પરંપરિત છે પરંતુ $T$ નથી.
$T$ સંમિત છે પરંતુ $S$ નથી.
$S$ કે $T$ કોઈપણ પરંપરિત નથી.
$S$ અને $T$ બંને સંમિત છે.
જો $L$ એ સમતલમાં આવેલી બધી જ રેખાઓનો ગણ હોય અને $R$ એ $L$ પરનો સંબંધ,$R = \left\{ {\left( {{L_1},{L_2}} \right):} \right.$ રેખા ${L_1}$ એ રેખા ${L_2}$ ને લંબ છે $\}$ દ્વારા વ્યાખ્યાયિત હોય, તો સાબિત કરો કે સંબંધ $R$ એ સંમિત સંબંધ છે, પરંતુ સ્વવાચક કે પરંપરિત સંબંધ નથી.
ધારોકે $A =\{-4,-3,-2,0,1,3,4\}$ અને $R =\left\{(a, b) \in A \times A : b=|a|\right.$ આથવા $\left.b^2=a+1\right\}$, આ $A$ પર વ્યાખ્યાયિત સંબંધ છે.તો સંબંધ $R$ સ્વવાચક તથા સંમિત બને તે માટે તેમા ઉમેરવા પડતા ન્યૂનતમ ઘટકની સંખ્યા $...........$ છે.
સાબિત કરો કે ગણ $\{1,2,3\}$ પર વ્યાખ્યાયિત સંબંધ $R =\{(1,1),\,(2,2),$ $(3,3)$, $(1,2)$, $(2,3)\}$ એ સ્વવાચક સંબંધ છે, પરંતુ તે સંમિત કે પરંપરિત સંબંધ નથી.
જો સંબંધ $R$: $\left\{ {\left( {x,y} \right);3x + 3y = 10} \right\} $ એ ગણ $N$ પર વ્યાખિયાયિત છે
વિધાન $-1$ : $R$ એ સમિત છે
વિધાન $-2$ : $R$ એ સ્વવાચક છે
વિધાન $-3$ : $R$ એ પરંપરિત છે.
હોય તો આપેલ વિધાન માટે સાચી શ્રેણી ........... થાય.
(જ્યા $T$ અને $F$ નો અર્થ અનુક્ર્મે સાચુ અને ખોટુ છે.)
$x \equiv 3$ (mod $7$), $p \in Z,$ નો ઉકેલગણ મેળવો.