Among the statements
$(S1)$: $(p \Rightarrow q) \vee((\sim p) \wedge q)$ is a tautology
$(S2)$: $(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$ is a contradiction
neither $(S1)$ and $(S2)$ is True
only $(S1)$ is True
only $(S2)$ is True
both $(S1)$ and $(S2)$ are True
The negation of the Boolean expression $x \leftrightarrow \sim y$ is equivalent to
Which of the following is true
If $q$ is false and $p\, \wedge \,q\, \leftrightarrow \,r$ is true, then which one of the following statements is a tautology?
The contrapositive of the statement "if I am not feeling well, then I will go to the doctor" is
For the statements $p$ and $q$, consider the following compound statements :
$(a)$ $(\sim q \wedge( p \rightarrow q )) \rightarrow \sim p$
$(b)$ $((p \vee q) \wedge \sim p) \rightarrow q$
Then which of the following statements is correct?