Let $p$ and $q$ be two statements.Then $\sim( p \wedge( p \Rightarrow \sim q ))$ is equivalent to
$p \vee( p \wedge(\sim q ))$
$p \vee((\sim p ) \wedge q )$
$(\sim p ) \vee q$
$p \vee( p \wedge q )$
The statement $\sim[p \vee(\sim(p \wedge q))]$ is equivalent to
For integers $m$ and $n$, both greater than $1$ , consider the following three statements
$P$ : $m$ divides $n$
$Q$ : $m$ divides $n^2$
$R$ : $m$ is prime,
then true statement is
Let $\Delta, \nabla \in\{\wedge, \vee\}$ be such that $( p \rightarrow q ) \Delta( p \nabla q )$ is a tautology. Then
Let the operations $*, \odot \in\{\wedge, \vee\}$. If $( p * q ) \odot( p \odot \sim q )$ is a tautology, then the ordered pair $(*, \odot)$ is.
Which of the following is always true