Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.

Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology

  • [JEE MAIN 2013]
  • A

    Statement $-1$ is false; Statement $-2$ is true

  • B

    Statement $-1$ is true; Statement $-2$ is true;
    Statement $-2$ is not correct explanation for Statement $-1$ 

  • C

    Statement $-1$ is true; Statement $-2$ is false

  • D

    Statement $-1$ is true; Statement $-2$ is true;
    Statement $-2$ is the correct explanation for Statement $-1$

Similar Questions

Consider the two statements :

$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology

$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.

Then :

  • [JEE MAIN 2021]

The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to

  • [JEE MAIN 2019]

The statement $\sim(p\leftrightarrow \sim q)$ is :

  • [JEE MAIN 2014]

$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.

  • [JEE MAIN 2022]

If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of  $p$ and  $q$ are respectively .

  • [JEE MAIN 2018]