Mathematical Reasoning
hard

Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.

Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology

A

Statement $-1$ is false; Statement $-2$ is true

B

Statement $-1$ is true; Statement $-2$ is true;
Statement $-2$ is not correct explanation for Statement $-1$ 

C

Statement $-1$ is true; Statement $-2$ is false

D

Statement $-1$ is true; Statement $-2$ is true;
Statement $-2$ is the correct explanation for Statement $-1$

(JEE MAIN-2013)

Solution

$A$ $B$ $ \sim A$ $A \wedge B$ ${ \sim A \vee B}$

$( {A \wedge B} $ $\to ( { \sim A \vee B}) $

$ \sim ( {A \wedge B}) $ $ \to  \sim A \vee B ) $
$T$ $T$ $F$ $T$ $T$ $T$ $F$
$T$ $F$ $F$ $F$ $F$ $T$ $F$
$F$ $T$ $T$ $F$ $T$ $T$ $F$
$F$ $F$ $T$ $F$ $T$ $T$ $F$

 

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.