Statement $-1$ : The statement $A \to (B \to A)$ is equivalent to $A \to \left( {A \vee B} \right)$.
Statement $-2$ : The statement $ \sim \left[ {\left( {A \wedge B} \right) \to \left( { \sim A \vee B} \right)} \right]$ is a Tautology
Statement $-1$ is false; Statement $-2$ is true
Statement $-1$ is true; Statement $-2$ is true;
Statement $-2$ is not correct explanation for Statement $-1$
Statement $-1$ is true; Statement $-2$ is false
Statement $-1$ is true; Statement $-2$ is true;
Statement $-2$ is the correct explanation for Statement $-1$
Consider the two statements :
$(\mathrm{S} 1):(\mathrm{p} \rightarrow \mathrm{q}) \vee(\sim \mathrm{q} \rightarrow \mathrm{p})$ is a tautology
$(S2): (\mathrm{p} \wedge \sim \mathrm{q}) \wedge(\sim \mathrm{p} \vee \mathrm{q})$ is a fallacy.
Then :
The Boolean expression $ \sim \left( {p \Rightarrow \left( { \sim q} \right)} \right)$ is equivalent to
The statement $\sim(p\leftrightarrow \sim q)$ is :
$\left(p^{\wedge} r\right) \Leftrightarrow\left(p^{\wedge}(\sim q)\right)$ is equivalent to $(\sim p)$ when $r$ is.
If $p \to ( \sim p\,\, \vee \, \sim q)$ is false, then the truth values of $p$ and $q$ are respectively .