Among the two statements
$(S1):$ $( p \Rightarrow q ) \wedge( q \wedge(\sim q ))$ is a contradiction and
$( S 2):( p \wedge q ) \vee((\sim p ) \wedge q ) \vee$
$( p \wedge(\sim q )) \vee((\sim p ) \wedge(\sim q ))$ is a tautology
only $( S 2)$ is true
only $( S 1)$ is true
both are false.
both are true
Which one of the following, statements is not a tautology
If the truth value of the statement $(P \wedge(\sim R)) \rightarrow((\sim R) \wedge Q)$ is $F$, then the truth value of which of the following is $F$ ?
The number of values of $r \in\{p, q, \sim p , \sim q \}$ for which $((p \wedge q) \Rightarrow(r \vee q)) \wedge((p \wedge r) \Rightarrow q)$ is a tautology, is:
If the Boolean expression $( p \Rightarrow q ) \Leftrightarrow( q *(\sim p ))$ is a tautology, then the Boolean expression $p *(\sim q )$ is equivalent to
If $p \Rightarrow (\sim p \vee q)$ is false, the truth values of $p$ and $q$ are respectively