Negation of the Boolean statement $( p \vee q ) \Rightarrow((\sim r ) \vee p )$ is equivalent to
$p \wedge(\sim q ) \wedge r$
$(\sim p ) \wedge(\sim q ) \wedge r$
$(\sim p ) \wedge q \wedge r$
$p \wedge q \wedge(\sim r )$
The compound statement $(\sim( P \wedge Q )) \vee((\sim P ) \wedge Q ) \Rightarrow((\sim P ) \wedge(\sim Q ))$ is equivalent to
For integers $m$ and $n$, both greater than $1$ , consider the following three statements
$P$ : $m$ divides $n$
$Q$ : $m$ divides $n^2$
$R$ : $m$ is prime,
then true statement is
Let $p$ and $q $ stand for the statement $"2 × 4 = 8" $ and $"4$ divides $7"$ respectively. Then the truth value of following biconditional statements
$(i)$ $p \leftrightarrow q$
$(ii)$ $~ p \leftrightarrow q$
$(iii)$ $~ q \leftrightarrow p$
$(iv)$ $~ p \leftrightarrow ~ q$
Let $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$ be such that $(p \wedge q) \Delta((p \vee q) \Rightarrow q)$ is a tautology. Then $\Delta$ is equal to
$\sim (p \vee q) \vee (\sim p \wedge q)$ is logically equivalent to