Negation of the Boolean statement $( p \vee q ) \Rightarrow((\sim r ) \vee p )$ is equivalent to
$p \wedge(\sim q ) \wedge r$
$(\sim p ) \wedge(\sim q ) \wedge r$
$(\sim p ) \wedge q \wedge r$
$p \wedge q \wedge(\sim r )$
The contrapositive of the statement "If I reach the station in time, then I will catch the train" is
Which of the following Boolean expression is a tautology ?
If $\mathrm{p} \rightarrow(\mathrm{p} \wedge-\mathrm{q})$ is false, then the truth values of $p$ and $q$ are respectively
Let $p , q , r$ be three statements such that the truth value of $( p \wedge q ) \rightarrow(\sim q \vee r )$ is $F$. Then the truth values of $p , q , r$ are respectively
Consider the following two statements :
$P :$ lf $7$ is an odd number, then $7$ is divisible by $2.$
$Q :$ If $7$ is a prime number, then $7$ is an odd number.
lf $V_1$ is the truth value of the contrapositive of $P$ and $V_2$ is the truth value of contrapositive of $Q,$ then the ordered pair $(V_1, V_2)$ equals