An $EM$ wave propagating in $x$-direction has a wavelength of $8\,mm$. The electric field vibrating $y$ direction has maximum magnitude of $60\,Vm ^{-1}$. Choose the correct equations for electric and magnetic fields if the $EM$ wave is propagating in vacuum

  • [JEE MAIN 2022]
  • A

    $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left( x -3 \times 10^{8} t \right)\right] \hat{ j }\,Vm ^{-1}$

    $B _{z}=2 \sin \left[\frac{\pi}{4} \times 10^{3}\left( x -3 \times 10^{8} t \right)\right] \hat{ k }\,T$

  • B

    $E_{y}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left( x -3 \times 10^{8} t \right)\right] \hat{ j }\,Vm ^{-1}$

    $B _{z}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left( x -3 \times 10^{8} t \right)\right] \hat{ k }\,T$

  • C

    $E _{y}=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{3}\left( x -3 \times 10^{8} t \right)\right] \hat{ j }\,Vm ^{-1}$

    $B _{z}=60 \sin \left[\frac{\pi}{4} \times 10^{3}\left( x -3 \times 10^{8} t \right)\right] \hat{ k }\, T$

  • D

    $E _{ y }=2 \times 10^{-7} \sin \left[\frac{\pi}{4} \times 10^{4}\left( x -4 \times 10^{8} t \right)\right] \hat{ j }\,Vm ^{-1}$

    $B _{z}=60 \sin \left[\frac{\pi}{4} \times 10^{4}\left( x -4 \times 10^{8} t \right)\right] \hat{ k } \,T$

Similar Questions

A linearly polarized electromagnetic wave in vacuum is $E=3.1 \cos \left[(1.8) z-\left(5.4 \times 10^{6}\right) {t}\right] \hat{\text { i }}\, {N} / {C}$ is incident normally on a perfectly reflecting wall at $z=a$. Choose the correct option

  • [JEE MAIN 2021]

A plane electromagnetic wave, has frequency of $2.0 \times 10^{10}\, Hz$ and its energy density is $1.02 \times 10^{-8}\, J / m ^{3}$ in vacuum. The amplitude of the magnetic field of the wave is close to$....nT$

$\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{\circ} \frac{ Nm ^{2}}{ C ^{2}}\right.$ and speed of $1 ight$ $\left.=3 \times 10^{8}\, ms ^{-1}\right)$

  • [JEE MAIN 2020]

A charged particle oscillates about its mean equilibrium position with a frequency of $10^9\ Hz$. The electromagnetic waves produced:

Given below are two statements:

Statement $I$ : A time varying electric field is a source of changing magnetic field and vice-versa. Thus a disturbance in electric or magnetic field creates $EM$ waves.

Statement $II$ : In a material medium. The $EM$ wave travels with speed $v =\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$.

In the light of the above statements, choose the correct answer from the options given below

  • [JEE MAIN 2022]

Identify the correct statements from the following descriptions of various properties of electromagnetic waves.

$A$. In a plane electromagnetic wave electric field and magnetic field must be perpendicular to each other and direction of propagation of wave should be along electric field or magnetic field.

$B.$ The energy in electromagnetic wave is divided equally between electric and magnetic fields.

$C.$ Both electric field and magnetic field are parallel to each other and perpendicular to the direction of propagation of wave.

$D.$ The electric field, magnetic field and direction of propagation of wave must be perpendicular to each other.

$E.$ The ratio of amplitude of magnetic field to the amplitude of electric field is equal to speed of light.

Choose the most appropriate answer from the options given below:

  • [JEE MAIN 2022]