An assembly of identical spring-mass systems is placed on a smooth horizontal surface as shown. Initially the springs are relaxed. The left mass is displaced to the left while the right mass is displaced to the right and released. The resulting collision is elastic. The time period of the oscillations of the system is :-

817-287

  • A

    $2\pi \sqrt {\frac{{2M}}{k}} $

  • B

    $2\pi \sqrt {\frac{M}{{2k}}} $

  • C

    $2\pi \sqrt {\frac{M}{k}} $

  • D

    $\pi \sqrt {\frac{M}{k}} $

Similar Questions

A $5\, kg$ collar is attached to a spring of spring constant $500\, Nm^{-1}$. It slides without friction over a horizontal rod. The collar is displaced from its equillibrium position by $10\, cm$ and released. The time period of oscillation is

A weightless spring of length $60\, cm$ and force constant $200\, N/m$ is kept straight and unstretched on a smooth horizontal table and its ends are rigidly fixed. A mass of $0.25\, kg$ is attached at the middle of the spring and is slightly displaced along the length. The time period of the oscillation of the mass is

Is the following Statement True or False ?

$1.$ If the spring is cut in two equal piece the spring constant of every piece decreases.

$2.$ Displacement of $SHO$ increases, its acceleration decrease. 

$3.$ A system can happen to oscillate, have more than one natural frequency.

$4.$ The periodic time of $SHM$ depend on amplitude or energy or phase constant.

In arrangement given in figure, if the block of mass m is displaced, the frequency is given by

A clock $S$ is based on oscillations of a spring and a clock $P$ is based on pendulum motion. Both clocks run at the same rate on earth. On a planet having same density as earth but twice the radius then