A spring having with a spring constant $1200\; N m ^{-1}$ is mounted on a hortzontal table as shown in Figure A mass of $3 \;kg$ is attached to the free end of the spring. The mass is then pulled sideways to a distance of $2.0 \;cm$ and released. Determine
$(i)$ the frequency of oscillations,
$(ii)$ maximum acceleration of the mass, and
$(iii)$ the maximum speed of the mass.
Spring constant, $k=1200\, N m ^{-1}$
Mass, $m=3\, kg$
Displacement, $A=2.0 \,cm =0.02\, cm$
Frequency of oscillation $v$, is given by the relation:
$v=\frac{1}{T}=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
Where, $T$ is the time period
$\therefore v=\frac{1}{2 \times 3.14} \sqrt{\frac{1200}{3}}=3.18\, m / s$
Hence, the frequency of oscillations is $3.18 \,m / s$
Maximum acceleration $(a)$ is given by the relation:
$a=\omega^{2} \,A$
$\omega=$ Angular frequency $=\sqrt{\frac{k}{m}}$
$A=$ Maximum displacement
$\therefore a=\frac{k}{m} A=\frac{1200 \times 0.02}{3}=8\, ms ^{-2}$
Hence, the maximum acceleration of the mass is $8.0 \,m / s ^{2}$
Maximum velocity, $v_{\max }=A \omega$
$=A \sqrt{\frac{k}{m}}=0.02 \times \sqrt{\frac{1200}{3}}=0.4\, m / s$
Hence, the maximum velocity of the mass is $0.4\, m / s$
A mass $m = 1.0\,kg$ is put on a flat pan attached to a vertical spring fixed on the ground. The mass of the spring and the pan is negligible. When pressed slightly and released, the mass executes simple harmonic motion. The spring constant is $500\,N/m.$ What is the amplitude $A$ of the motion, so that the mass $m$ tends to get detached from the pan ? (Take $g = 10\,m/s^2$ ). The spring is stiff enough so that it does not get distorted during the motion.
The frequency of oscillations of a mass $m$ connected horizontally by a spring of spring constant $k$ is $4 Hz$. When the spring is replaced by two identical spring as shown in figure. Then the effective frequency is,
Two small bodies of mass of $2\, kg$ each attached to each other using a thread of length $10\, cm$, hang on a spring whose force constant is $200\, N/m$, as shown in the figure. We burn the thread. What is the distance between the two bodies when the top body first arrives at its highest position .... $cm$ ? (Take $\pi^2 = 10$)
Find the time period of mass $M$ when displaced from its equilibrium position and then released for the system shown in figure.
The frequency of oscillation of the springs shown in the figure will be