An electric line of force in $X$, $Y-$ plane is given by $x^2+y^2 = 1$. A particle with unit positive charge, initially at rest at the point $x = 1, y = 0$ in the $X, Y-$ plane
will not move at all
will move along the straight line
will move along the circular line of force
information is insufficient to draw any conclusion
The electric field inside a spherical shell of uniform surface charge density is
A uniform electric field $E =(8\,m / e ) V / m$ is created between two parallel plates of length $1 m$ as shown in figure, (where $m =$ mass of electron and $e=$ charge of electron). An electron enters the field symmetrically between the plates with a speed of $2\,m / s$. The angle of the deviation $(\theta)$ of the path of the electron as it comes out of the field will be........
An electron is rotating around an infinite positive linear charge in a circle of radius $0.1 \,m$, if the linear charge density is $1 \,\mu C / m$, then the velocity of electron in $m / s$ will be ...... $\times 10^7$
In an ink-jet printer, an ink droplet of mass $m$ is given a negative charge $q$ by a computer-controlled charging unit, and then enters at speed $v$ in the region between two deflecting parallel plates of length $L$ separated by distance $d$ (see figure below). All over this region exists a downward electric field which you can assume to be uniform. Neglecting the gravitational force on the droplet, the maximum charge that can be given so that it will not hit a plate is close to :
An electron falls from rest through a vertical distance $h$ in a uniform and vertically upward directed electric field $E.$ The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance $h.$ The time of fall of the electron, in comparison to the time of fall of the proton is