An electric line of force in $X$, $Y-$ plane is given by $x^2+y^2 = 1$. A particle with unit positive charge, initially at rest at the point $x = 1, y = 0$ in the $X, Y-$ plane
will not move at all
will move along the straight line
will move along the circular line of force
information is insufficient to draw any conclusion
An electron of mass ${m_e}$ initially at rest moves through a certain distance in a uniform electric field in time ${t_1}$. A proton of mass ${m_p}$ also initially at rest takes time ${t_2}$ to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio of ${t_2}/{t_1}$ is nearly equal to
An electron enters a parallel plate capacitor with horizontal speed $u$ and is found to deflect by angle $\theta$ on leaving the capacitor as shown below. It is found that $\tan \theta=0.4$ and gravity is negligible. If the initial horizontal speed is doubled, then the value of $\tan \theta$ will be
An electron is released from the bottom plate $A$ as shown in the figure $(E = 10^4\, N/C)$. The velocity of the electron when it reaches plate $B$ will be nearly equal to
A Charged particle of mass $m$ and charge $q$ is released from rest in a uniform electric field $E.$ Neglecting the effect of gravity, the kinetic energy of the charged particle after $'t'$ second is
In Millikan's oil drop experiment, a charged drop falls with terminal velocity $V$. If an electric field $E$ is applied in vertically upward direction then it starts moving in upward direction with terminal velocity $2V$.If magnitude of electric field is decreased to $\frac{E}{2}$, then terminal velocity will become