An electron (mass $= 9 \times 10^{-31}\,kg$. Charge $= 1.6 \times 10^{-19}\,C$) whose kinetic energy is $7.2 \times 10^{-18}$ $joule$ is moving in a circular orbit in a magnetic field of $9 \times 10^{-5} \,weber/m^2$. The radius of the orbit is.....$cm$

  • A

    $1.25$

  • B

    $2.5$

  • C

    $12.5 $

  • D

    $25$

Similar Questions

A proton of mass $m$ and charge $+e$ is moving in a circular orbit in a magnetic field with energy $1\, MeV$. What should be the energy of $\alpha - $particle (mass = $4m$ and charge = $+ 2e),$ so that it can revolve in the path of same radius.......$MeV$

An electron and a proton enter a magnetic field perpendicularly. Both have same kinetic energy. Which of the following is true

A particle with charge $q$, moving with a momentum $p$, enters a uniform magnetic field normally. The magnetic field has magnitude $B$ and is confined to a region of width $d$, where $d < \frac{p}{{Bq}}$, The particle is deflected by an angle $\theta $ in crossing the field

When a proton is released from rest in a room, it starts with an initial acceleration $a_0$ towards west. When it is projected towards north with  a speed $v_0$ it moves with an initial acceleration $3a_0$ toward west. The electric and magnetic fields in the room are

  • [AIPMT 2013]

A uniform electric field and a uniform magnetic field are produced, pointed in the same direction. An electron is projected with its velocity pointing in the same direction

  • [AIEEE 2005]