Two particles $x$ and $y$ have equal charges and possessing equal kinetic energy enter in a uniform magnetic field and describe circular path of radius of curvature $r_1$ and $r_2$ respectively. The ratio of their masses is
$\left( {\frac{{{r_1}}}{{{r_2}}}} \right)$
${\left( {\frac{{{r_1}}}{{{r_2}}}} \right)^{1/2}}$
${\left( {\frac{{{r_1}}}{{{r_2}}}} \right)^2}$
${\left( {\frac{{{r_2}}}{{{r_1}}}} \right)}$
An electron moves straight inside a charged parallel plate capacitor of uniform charge density. The space between the plates is filled with uniform magnetic field of intensity $B ,$ as shown in the figure, Neglecting effect of gravity, the time of straight line motion of the electron in the capacitor is
A particle is projected with a velocity ( $10\ m/s$ ) along $y-$ axis from point $(2, 3)$ . Magnetic field of $\left( {3\hat i + 4\hat j} \right)$ Tesla exist uniformly in the space. Its speed when particle passes through $y-$ axis for the third time is : (neglect gravity)
Proton, deuteron and alpha particle of same kinetic energy are moving in circular trajectories in a constant magnetic field. The radii of proton, deuteron and alpha particle are respectively $r_p, r_d$ and $r_{\alpha}$ Which one of the following relation is correct?
An electron with energy $880 \,eV$ enters a uniform magnetic field of induction $2.5 \times 10^{-3}\,T$. The radius of path of the circle will approximately be :
An electron (mass $= 9 \times 10^{-31}\,kg$. Charge $= 1.6 \times 10^{-19}\,C$) whose kinetic energy is $7.2 \times 10^{-18}$ $joule$ is moving in a circular orbit in a magnetic field of $9 \times 10^{-5} \,weber/m^2$. The radius of the orbit is.....$cm$