An electron and a proton are in a uniform electric field, the ratio of their accelerations will be

  • A

    Zero

  • B

    Unity

  • C

    The ratio of the masses of proton and electron

  • D

    The ratio of the masses of electron and proton

Similar Questions

The surface of a planet is found to be uniformly charged. When a particle of mass $m$ and no charge is thrown at an angle from the surface of the planet, it has a parabolic trajectory as in projectile motion with horizontal range $L$. A particle of mass $m$ and charge $q$, with the same initial conditions has a range $L / 2$. The range of particle of mass $m$ and charge $2 q$, with the same initial conditions is

  • [KVPY 2011]

A particle of charge $1\  \mu C\  \&\  mass$ $1\  gm$ moving with a velocity of $4\  m/s$ is subjected to a uniform electric field of magnitude $300\  V/m$ for $10\  sec$. Then it's final speed cannot be.......$m/s$

An electron of mass ${m_e}$ initially at rest moves through a certain distance in a uniform electric field in time ${t_1}$. A proton of mass ${m_p}$ also initially at rest takes time ${t_2}$ to move through an equal distance in this uniform electric field. Neglecting the effect of gravity, the ratio of ${t_2}/{t_1}$ is nearly equal to

  • [AIIMS 2015]

A stream of a positively charged particles having $\frac{ q }{ m }=2 \times 10^{11} \frac{ C }{ kg }$ and velocity $\overrightarrow{ v }_0=3 \times 10^7 \hat{ i ~ m} / s$ is deflected by an electric field $1.8 \hat{ j } kV / m$. The electric field exists in a region of $10 cm$ along $x$ direction. Due to the electric field, the deflection of the charge particles in the $y$ direction is $...........mm$

  • [JEE MAIN 2023]

An electric line of force in $X$, $Y-$ plane is given by $x^2+y^2 = 1$. A particle with unit positive charge, initially at rest at the point $x = 1, y = 0$ in the $X, Y-$ plane