ऊष्मित कैथोड से उत्सर्जित और $2.0\, kV$ के विभवांतर पर त्वरित एक इलेक्ट्रॉन, $0.15 \,T$ के एकसमान चुंबकीय क्षेत्र में प्रवेश करता है। इलेक्ट्रॉन का गमन पथ ज्ञात कीजिए यदि चुंबकीय क्षेत्र $(a)$ प्रारंभिक वेग के लंबवत है $(b)$ प्रारंभिक वेग की दिशा से $30^{\circ}$ का कोण बनाता है।

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Magnetic field strength, $B=0.15 \,T$

Charge on the electron, $e=1.6 \times 10^{-19} \,C$

Mass of the electron, $m=9.1 \times 10^{-31}\, kg$

Potential difference, $V =2.0\, kV =2 \times 10^{3} \,V$

Thus, kinetic energy of the electron $=e V$

$\Rightarrow e V=\frac{1}{2} m v^{2}$

$v=\sqrt{\frac{2 e V}{m}}\dots(i)$

Where,

$v=$ Velocity of the electron

$(a)$ Magnetic force on the electron provides the required centripetal force of the electron. Hence, the electron traces a circular path of radius $r$ Magnetic force on the electron is given by the relation,$ Bev$

Centripetal force $=\frac{m v^{2}}{r}$

$\therefore B e v=\frac{m v^{2}}{r}$

$r=\frac{m v}{B e}\dots(ii)$

From equations $(i)$ and $(ii)$, we get

$r=\frac{m}{B e}\left[\frac{2 e V}{m}\right]^{1 / 2}$

$=\frac{9.1 \times 10^{-31}}{0.15 \times 1.6 \times 10^{-19}} \times\left(\frac{2 \times 1.6 \times 10^{-19} \times 2 \times 10^{3}}{9.1 \times 10^{-31}}\right)^{1 / 2}$

$=100.55 \times 10^{-5}$

$=1.01 \times 10^{-3} \,m$

$=1\, m,m$

Hence, the electron has a circular trajectory of radius $1.0\, m\,m$ normal to the magnetic field.

$(b)$ When the field makes an angle $\theta$ of $30^{\circ}$ with initial velocity, the initial velocity will be, $v_{1}=v \sin \theta$

From equation $(ii)$, we can write the expression for new radius as:

$r_{1}=\frac{m v_{1}}{B e}$

$=\frac{m v \sin \theta}{B e}$

$=\frac{9.1 \times 10^{-31}}{0.15 \times 1.6 \times 10^{-19}} \times\left[\frac{2 \times 1.6 \times 10^{-19} \times 2 \times 10^{3}}{9 \times 10^{-31}}\right]^{\frac{1}{2}} \times \sin 30^{\circ}$

$=0.5 \times 10^{-3}\, m$

$=0.5 \,m\,m$

Hence, the electron has a helical trajectory of radius $0.5 \,m\,m$, with axis of the solenoid along the magnetic field direction.

Similar Questions

समान गतिज ऊर्जा के ${H^ + },\,H{e^ + }$ तथा ${O^{ +  + }}$ आयन एक ऐसे क्षेत्र से होकर गुजरते हैं जहाँ एकसमान चुम्बकीय क्षेत्र $B$ आयन के वेग के लम्बवत् हैं। आयन ${H^ + },\,H{e^ + }$ तथा ${O^{ +  + }}$ के द्रव्यमान क्रमश: $1:4:16 $ के अनुपात में है। परिणामस्वरुप

एक प्रोटॉन (द्रव्यमान $ = 1.67 \times {10^{ - 27}}\,kg$ तथा आवेश $ = 1.6 \times {10^{ - 19}}\,C)$ $2$ $weber/{m^2}$ के चुम्बकीय क्षेत्र में $3.4 \times {10^7}\,m/\sec $ के वेग से लम्बवत् प्रवेश करता है। प्रोटॉन का त्वरण होगा

एक कैथोड किरणों के पुंज का वेग $5 \times {10^6}\,m{s^{ - 1}}$ है, यह एक स्थान जिसमें विद्युत व चुम्बकीय क्षेत्र परस्पर लम्बवत् हैं, प्रवेश करता है तथा अविक्षेपित निकलता है। यदि $| B |=0.02\; T$, हो तब विद्युत क्षेत्र का परिमाण है

एक आवेशित कण, जो कि आरंभ में बिन्दु $O$ पर विरामवस्था में है, छोड़ने पर चित्र में दिखाये गए पथ के अनुसार अनु गमन करता है। इस तरह का पथ निम्न में से किन परिस्थितियों में संभव है? 

  • [KVPY 2014]

एक कण का द्रव्यमान $0.6\, gm$ एवं इस पर आवेश $25\, nC$ है। यह समान वेग ${\rm{1}}{\rm{.2}} \times {\rm{1}}{{\rm{0}}^{\rm{4}}}\,m{s^{ - 1}}$ से एक समरूप चुम्बकीय क्षेत्र में क्षैतिजत: गति कर रहा है। तब चुम्बकीय क्षेत्र का मान है $(g = 10\,m{s^{ - 2}})$