जैसा कि निम्न चित्र में प्रदर्शित है, एक इलेक्ट्रॉन जब एक समांतर पट्टिका संधारित्र में क्षैतिज चाल $u$ से प्रवेश करता है तो बाहर निकलने पर कोण $\theta$ से विचलित हो जाता है। यह पाया जाता है कि $\tan \theta=0.4$ तथा गुरुत्वाकर्षण नगण्य है। यदि प्रारम्भिक क्षैतिज चाल को दोगुना कर दिया जाए तो $\tan \theta$ का मान क्या होगा?
$0.1$
$0.2$
$0.8$
$1.6$
एक इलेक्ट्रॉन जिसका द्रव्यमान ${m_e}$ है प्रारम्भ में विराम अवस्था में है। ${t_1}$ समय में इलेक्ट्रॉन किसी एकसमान विद्युत क्षेत्र में निश्चित दूरी से चलता है। एक प्रोटॉन जिसका द्रव्यमान ${m_p}$ है, वह भी विराम अवस्था में है। प्रोटॉन भी इसी विद्युत क्षेत्र में उतनी ही दूरी चलने में ${t_2}$ समय लेता है। यदि गुरुत्वीय प्रभाव नगण्य माना जाये तो ${t_2}/{t_1}$ का लगभग मान होगा
चित्र में दर्शाये अनुसार, दो आवेशित समान्तर पट्टियों के बीच $10 \mathrm{~N} / \mathrm{C}$ का कोई एक समान विद्युत क्षेत्र उत्पन्न होता है। पट्टियों के बीच के क्षेत्र में, एक इलेक्ट्रॉन $0.5\ \mathrm{eV}$ गतिज ऊर्जा के साथ प्रवेश करता है। प्रत्येक पट्टी की लम्बाई $10 \mathrm{~cm}$ है। इलेक्ट्रॉन जैसे ही क्षेत्र के बाहर आता है, तो इसके पथ में हुआ विचलन कोण $(\theta) . . .. { }^{\circ}$ (डिग्री) है।
एक इलेक्ट्रॉन विद्युत क्षेत्र में किसी वेग से विद्युत बल रेखाओं की दिशा में प्रवेश करता है तो
एक इलेक्ट्रॉन $2 \times {10^4}N{C^{ - 1}}$ परिमाण के विद्युत क्षेत्र में कुछ दूरी से गिरता है। यदि विद्युत क्षेत्र का परिमाण नियत रखकर इसकी दिशा बदल दी जाये और एक प्रोटॉन को कुछ से गिराया जाये तो गिरने में लगा समय