An electron gun is placed inside a long solenoid of radius $\mathrm{R}$ on its axis. The solenoid has $\mathrm{n}$ turns/length and carries a current $I$. The electron gun shoots an electron along the radius of the solenoid with speed $v$. If the electron does not hit the surface of the solenoid, maximum possible value of ${v}$ is (all symbols have their standard meaning)
$\frac{\mathrm{e} \mu_{0} \mathrm{nIR}}{\mathrm{m}}$
$\frac{\mathrm{e} \mu_{0} \mathrm{nIR}}{2 \mathrm{m}}$
$\frac{2 \mathrm{e} \mu_{0} \mathrm{nIR}}{\mathrm{m}}$
$\frac{\mathrm{e} \mu_{0} \mathrm{nIR}}{4 \mathrm{m}}$
An electron is moving along the positive $X$$-$axis. You want to apply a magnetic field for a short time so that the electron may reverse its direction and move parallel to the negative $X$$-$axis. This can be done by applying the magnetic field along
$\alpha $ particle, proton and duetron enters in a uniform (transverse) magnetic field $'B'$ with same acceleration potential find ratio of radius of path followed by these particles.
Two charged particles traverse identical helical paths in a completely opposite sense in a uniform magnetic field $B$ = $B_0\hat{k}$
A rectangular region of dimensions ( $\omega \times l(\omega) \ll l$ ) has a constant magnetic field into the plane of the paper as shown in the figure below. On one side, the region is bounded by a screen. On the other side, positive ions of mass $m$ and charge $q$ are accelerated from rest and towards the screen by a parallel plate capacitor at constant potential difference $V < 0$ and come out through a small hole in the upper plate. Which one of the following statements is correct regarding the charge on the ions that hit the screen?
A charged particle is moving in a circular orbit of radius $6\, cm$ with a uniform speed of $3 \times 10^6\, m/s$ under the action of a uniform magnetic field $2 \times 10^{-4}\, Wb/m^2$ which is at right angles to the plane of the orbit. The charge to mass ratio of the particle is