An electron is moving round the nucleus of a hydrogen atom in a circular orbit of radius $r$. The coulomb force $\overrightarrow F $ between the two is (Where $K = \frac{1}{{4\pi {\varepsilon _0}}}$)

  • [AIPMT 2003]
  • A

    $ - K\frac{{{e^2}}}{{{r^3}}}\hat r$

  • B

    $K\frac{{{e^2}}}{{{r^3}}}\vec r$

  • C

    $ - K\frac{{{e^2}}}{{{r^3}}}\vec r$

  • D

    $K\frac{{{e^2}}}{{{r^2}}}\hat r$

Similar Questions

What is the force (in $N$) between two small charged spheres having charges of $2 \times 10^{-7} \;C$ and $3 \times 10^{-7} \;C$ placed $30\; cm$ apart in air?

Three charges $ - {q_1},\,\, + {q_2}$ and $ - {q_3}$ are placed as shown in the figure. The $x$-component of the force on $ - {q_1}$ is proportional to

  • [AIEEE 2003]

Four point charges $q_{A}=2\; \mu C, q_{B}=-5\; \mu C,$ $q_{C}=2\; \mu C,$ and $q_{D}=-5\;\mu C$ are located at the corners of a square $ABCD$ of side $10\; cm .$ What is the force on a charge of $1 \;\mu C$ placed at the centre of the square?

Why Coulombian force is called two body force ?

Four point $+ve$ charges of same magnitude $(Q)$ are placed at four corners of a rigid square frame as shown in figure. The plane of the frame is perpendicular to $Z$ axis. If a $-ve$ point charge is placed at a distance $z$ away from the above frame $(z<< L)$ then

  • [AIIMS 2005]