The ratio of the forces between two small spheres with constant charge $(a)$ in air $(b)$ in a medium of dielectric constant $K$ is
$1 : K$
$K : 1$
$1:{K^2}$
${K^2}:1$
Given below are three schematic graphs of potential energy $V(r)$ versus distance $r$ for three atomic particles : electron $\left(e^{-}\right)$, proton $\left(p^{+}\right)$and neutron $(n)$, in the presence of a nucleus at the origin $O$. The radius of the nucleus is $r_0$. The scale on the $V$-axis may not be the same for all figures. The correct pairing of each graph with the corresponding atomic particle is
Two point charges $A$ and $B$, having charges $+Q$ and $- Q$ respectively, are placed at certain distance apart and force acting between them is $\mathrm{F}$. If $25 \%$ charge of $A$ is transferred to $B$, then force between the charges becomes
A particle of charge $-q$ and mass $m$ moves in a circle of radius $r$ around an infinitely long line charge of linear density $+\lambda$. Then time period will be given as
(Consider $k$ as Coulomb's constant)
Write value of Coulombian constant $k$ in $SI$ unit.
Why Coulombian force is called two body force ?