The ratio of the forces between two small spheres with constant charge $(a)$ in air $(b)$ in a medium of dielectric constant $K$ is

  • A

    $1 : K$

  • B

    $K : 1$

  • C

    $1:{K^2}$

  • D

    ${K^2}:1$

Similar Questions

Positive point charges are placed at the vertices of a star shape as shown in the figure. Direction of the electrostatic force on a negative point charge at the centre $O$ of the star is

  • [KVPY 2017]

Two identical tennis balls each having mass $m$ and charge $q$ are suspended from a fixed point by threads of length $l$. What is the equilibrium separation when each thread makes a small angle $\theta$ with the vertical?

  • [JEE MAIN 2021]

A charged particle with charge $q$ and mass $m$ starts with an initial kinetic energy $K$ at the middle of a uniformly charged spherical region of total charge $Q$ and radius $R$ . $q$ and $Q$ have opposite signs. The spherically charged region is not free to move . The value of $K_0$ is such that the particle will just reach the boundary of the spherically charged region. How much time does it take for the particle to reach the boundary of the region.

Two small conducting spheres of equal radius have charges $ + 10\,\mu C$ and $ - 20\,\mu C$ respectively and placed at a distance $R$ from each other experience force ${F_1}$. If they are brought in contact and separated to the same distance, they experience force ${F_2}$. The ratio of ${F_1}$ to ${F_2}$ is

A paisa coin is made up of $\mathrm{Al - Mg}$ alloy and weighs $0.75\, g$. It has a square shape and its diagonal measures $17$ $\mathrm{mm}$. It is electrically neutral and contains equal amounts of positive and negative charges.