An electron is projected with velocity $v_0$ in a uniform electric field $E$ perpendicular to the field. Again it is projetced with velocity $v_0$ perpendicular to a uniform magnetic field $B/$ If $r_1$ is initial radius of curvature just after entering in the electric field and $r_2$ is initial radius of curvature just after entering in magnetic field then the ratio $r_1:r_2$ is equal to 

  • A

    $\frac{{Bv_0^2}}{E}$

  • B

    $\frac{B}{E}$

  • C

    $\frac{{E{v_0}}}{B}$

  • D

    $\frac{{B{v_0}}}{E}$

Similar Questions

charged particle with charge $q$ enters a region of constant, uniform and mutually orthogonal fields $\vec E$ and $\vec B$ with a velocity $\vec v$ perpendicular to both $\vec E$ and $\vec B$ , and comes out without any change in magnitude or direction of $\vec v$ . Then

  • [AIEEE 2007]

An electron having charge $1.6 \times {10^{ - 19}}\,C$ and mass $9 \times {10^{ - 31}}\,kg$ is moving with $4 \times {10^6}\,m{s^{ - 1}}$ speed in a magnetic field $2 \times {10^{ - 1}}\,tesla$ in a circular orbit. The force acting on electron and the radius of the circular orbit will be

A uniform electric field and a uniform magnetic field are produced, pointed in the same direction. An electron is projected with its velocity pointing in the same direction

  • [AIEEE 2005]

A particle of mass $m$ and charge $q$ enters a region of magnetic field (as shown) with speed $v$. There is a region in which the magnetic field is absent, as shown. The particle after entering the region collides elas tically with a rigid wall. Time after which the velocity of particle becomes anti parallel to its initial velocity is

An $e^-$ is moving parallel to a long current carrying wire as shown. Force on electron is