A particle of mass $M$ and charge $Q$ moving with velocity $\mathop v\limits^ \to $ describes a circular path of radius $R$ when subjected to a uniform transverse magnetic field of induction $B$. The work done by the field when the particle completes one full circle is
$B\,Qv\,2\pi \,R$
$\left( {\frac{{M{v^2}}}{R}} \right)\,2\pi R$
Zero
$BQ2\pi R$
Fill the blank :
$(i)$ Static charge produces ...... field around it.(Electric, Magnetic)
$(ii)$ Moving charge produces ...... field around it.
An electron, a proton, a deuteron and an alpha particle, each having the same speed are in a region of constant magnetic field perpendicular to the direction of the velocities of the particles. The radius of the circular orbits of these particles are respectively $R_e, R_p, R_d \,$ and $\, R_\alpha$. It follows that
A particle having the same charge as of electron moves in a circular path of radius $0.5
\,cm$ under the influence of a magnetic field of $0.5\,T.$ If an electric field of $100\,V/m$ makes it to move in a straight path, then the mass of the particle is (given charge of electron $= 1.6 \times 10^{-19}\, C$ )
A particle of mass $m$ and charge $q$ enters a region of magnetic field (as shown) with speed $v$. There is a region in which the magnetic field is absent, as shown. The particle after entering the region collides elas tically with a rigid wall. Time after which the velocity of particle becomes anti parallel to its initial velocity is
A charged particle is released from rest in a region of steady and uniform electric and magnetic fields which are parallel to each other. The particle will move in a