An electron is rotating around an infinite positive linear charge in a circle of radius $0.1 \,m$, if the linear charge density is $1 \,\mu C / m$, then the velocity of electron in $m / s$ will be ...... $\times 10^7$

  • A

    $0.562$

  • B

    $5.62$

  • C

    $562$

  • D

    $0.0562$

Similar Questions

In an ink-jet printer, an ink droplet of mass $m$ is given a negative charge $q$ by a computer-controlled charging unit, and then enters at speed $v$ in the region between two deflecting parallel plates of length $L$ separated by distance $d$ (see figure below). All over this region exists a downward electric field which you can assume to be uniform. Neglecting the gravitational force on the droplet, the maximum charge that can be given so that it will not hit a plate is close to :

A uniform electric field of $10\,N / C$ is created between two parallel charged plates (as shown in figure). An electron enters the field symmetrically between the plates with a kinetic energy $0.5\,eV$. The length of each plate is $10\,cm$. The angle $(\theta)$ of deviation of the path of electron as it comes out of the field is  $.........$(in degree).

  • [JEE MAIN 2023]

A stream of a positively charged particles having $\frac{ q }{ m }=2 \times 10^{11} \frac{ C }{ kg }$ and velocity $\overrightarrow{ v }_0=3 \times 10^7 \hat{ i ~ m} / s$ is deflected by an electric field $1.8 \hat{ j } kV / m$. The electric field exists in a region of $10 cm$ along $x$ direction. Due to the electric field, the deflection of the charge particles in the $y$ direction is $...........mm$

  • [JEE MAIN 2023]

An inclined plane making an angle of $30^{\circ}$ with the horizontal is placed in a uniform horizontal electric field $200 \, \frac{ N }{ C }$ as shown in the figure. A body of mass $1\, kg$ and charge $5\, mC$ is allowed to slide down from rest at a height of $1\, m$. If the coefficient of friction is $0.2,$ find the time (in $s$ )taken by the body to reach the bottom. $\left[ g =9.8 \,m / s ^{2}, \sin 30^{\circ}=\frac{1}{2}\right.$; $\left.\cos 30^{\circ}=\frac{\sqrt{3}}{2}\right]$

  • [JEE MAIN 2021]

A body having specific charge $8\,\mu {C} / {g}$ is resting on a frictionless plane at a distance $10\, {cm}$ from the wall (as shown in the figure). It starts moving towards the wall when a uniform electric field of $100 \,{V} / {m}$ is applied horizontally toward the wall. If the collision of the body with the wall is perfectly elastic, then the time period of the motion will be $....\, S.$

  • [JEE MAIN 2021]