An electron moving with a velocity ${\vec V_1} = 2\,\hat i\,\, m/s$ at a point in a magnetic field experiences a force ${\vec F_1} =  - 2\hat j\,N$ .  If the electron is moving with a velocity ${\vec V_2} = 2\,\hat j \,\,m/s$ at the same point, it experiences a force ${\vec F_2} =  + 2\,\hat i\,N$ .  The force the electron would experience if it were moving with a velocity ${\vec V_3} = 2\hat k$  $m/s$ at the same point is

  • A

    zero

  • B

    $2\hat k\,N$

  • C

    $- 2\hat k\,N$

  • D

    information is insufficient

Similar Questions

An electron having kinetic energy $T$ is moving in a circular orbit of radius $R$ perpendicular to a uniform magnetic induction $\vec B$ . If kinetic energy is doubled and magnetic induction tripled, the radius will become 

A charged particle initially at rest at $O$,when released follows a trajectory as shown alongside. Such a trajectory is possible in the presence of

  • [KVPY 2014]

A particle of mass $m$ carrying charge $q$ is accelerated by a potential difference $V$. It enters perpendicularly in a region of uniform magnetic field $B$ and executes circular arc of radius $R$, then $\frac{q}{m}$ equals

Two electrons are moving along parallel lines unidirectionarly with same velocity they will

The magnetic field is uniform for $y>0$ and points into the plane. The magnetic field is uniform and points out of the plane for $y<0$. A proton denoted by filled circle leaves $y=0$ in the $-y$-direction with some speed as shown below.Which of the following best denotes the trajectory of the proton?

  • [KVPY 2018]