7. MOTION
medium

An electron moving with a velocity of $5 \times 10^{4}\, ms ^{-1}$ enters into a uniform electric field and acquires a uniform acceleration of $10^{4}\, ms ^{-2}$ in the direction of its initial motion.

$(i)$ Calculate the time in which the electron would acquire a velocity double of its initial velocity.

$(ii)$ How much distance the electron would cover in this time ?

A

$20 \,s$ and $7.5 \times 10^{4}\, m$

B

$5 \,s$ and $37.5 \times 10^{4}\, m$

C

$0.5 \,s$ and $75.3 \times 10^{4}\, m$

D

$15 \,s$ and $35.7 \times 10^{4}\, m$

Solution

Given initial velocity, $u=5 \times 10^{4} \,ms ^{-1}$

And acceleration, $a=10^{4} \,ms ^{-2}$

$(i)$ final velocity $=v=2 u=2 \times 5 \times 10^{4} \,ms ^{-1}=10 \times 10^{4}\, ms ^{-1}$

To find $t,$ use $v=u+a t$

Or $t=\frac{v-u}{a}$

$\left(\frac{10 \times 10^{4}-5 \times 10^{4}}{10^{4}}\right)=\frac{5 \times 10^{4}}{10^{4}}=5 \,s$

$(ii)$ Using $s=u t+\frac{1}{2} a t^{2}$

$=\left(5 \times 10^{4}\right) \times 5+\frac{1}{2}\left(10^{4}\right) \times(5)^{2}=25 \times 10^{4}+\frac{25}{2} \times 10^{4}=37.5 \times 10^{4}\, m$

Standard 9
Science

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.