An ellipse is drawn with major and minor axes of lengths $10 $ and $8$ respectively. Using one focus as centre, a circle is drawn that is tangent to the ellipse, with no part of the circle being outside the ellipse. The radius of the circle is
$\sqrt 3 $
$2$
$2\sqrt 2 \,\,$
$\sqrt 5 \,$
The eccentricity of the ellipse $25{x^2} + 16{y^2} - 150x - 175 = 0$ is
If the radius of the largest circle with centre $(2,0)$ inscribed in the ellipse $x^2+4 y^2=36$ is $r$, then $12 r^2$ is equal to
Tangents are drawn from the point $P(3,4)$ to the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$ touching the ellipse at points $\mathrm{A}$ and $\mathrm{B}$.
$1.$ The coordinates of $\mathrm{A}$ and $\mathrm{B}$ are
$(A)$ $(3,0)$ and $(0,2)$
$(B)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$(C)$ $\left(-\frac{8}{5}, \frac{2 \sqrt{161}}{15}\right)$ and $(0,2)$
$(D)$ $(3,0)$ and $\left(-\frac{9}{5}, \frac{8}{5}\right)$
$2.$ The orthocentre of the triangle $\mathrm{PAB}$ is
$(A)$ $\left(5, \frac{8}{7}\right)$ $(B)$ $\left(\frac{7}{5}, \frac{25}{8}\right)$
$(C)$ $\left(\frac{11}{5}, \frac{8}{5}\right)$ $(D)$ $\left(\frac{8}{25}, \frac{7}{5}\right)$
$3.$ The equation of the locus of the point whose distances from the point $\mathrm{P}$ and the line $\mathrm{AB}$ are equal, is
$(A)$ $9 x^2+y^2-6 x y-54 x-62 y+241=0$
$(B)$ $x^2+9 y^2+6 x y-54 x+62 y-241=0$
$(C)$ $9 x^2+9 y^2-6 x y-54 x-62 y-241=0$
$(D)$ $x^2+y^2-2 x y+27 x+31 y-120=0$
Give the answer question $1,2$ and $3.$
If $x = 9$ is the chord of contact of the hyperbola ${x^2} - {y^2} = 9$, then the equation of the corresponding pair of tangents is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{4}+\frac{y^2} {25}=1$.