Find the equation for the ellipse that satisfies the given conditions: Foci $(\pm 3,\,0),\,\, a=4$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Foci $(\pm 3,0), a=4$

since the foci are on the $x-$ axis, the major axis is along the $x-$ axis.

Therefore, the equation of the ellipse will be of the form $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1,$ where a is the semimajor axis.

Accordingly, $c=3$ and $a=4$

It is known that $a^{2}=b^{2}+c^{2}$

$\therefore 4^{2}=b^{2}+3^{2}$

$\Rightarrow 16=b^{2}+9$

$\Rightarrow b^{2}=16-9=7$

Thus, the equation of the ellipse is $\frac{x^{2}}{16}+\frac{y^{2}}{7}=1$

Similar Questions

The length of the chord of the ellipse $\frac{x^2}{25}+\frac{y^2}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to:

  • [JEE MAIN 2024]

If the tangents on the ellipse $4x^2 + y^2 = 8$ at the points $(1, 2)$ and $(a, b)$ are perpendicular to each other, then $a^2$ is equal to

  • [JEE MAIN 2019]

The lengths of major and minor axis of an ellipse are $10$ and $8$ respectively and its major axis along the $y$ - axis. The equation of the ellipse referred to its centre as origin is

In the ellipse, minor axis is $8$ and eccentricity is $\frac{{\sqrt 5 }}{3}$. Then major axis is

Statement $-1$ : If two tangents are drawn to an ellipse from a single point and if they are perpendicular to each other, then locus of that point is always a circle 

Statement $-2$ : For an ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ , locus of that point from which two perpendicular tangents are drawn, is $x^2 + y^2 = (a + b)^2$ .