An ellipse passes through the point $(-3, 1)$ and its eccentricity is $\sqrt {\frac{2}{5}} $. The equation of the ellipse is
$3{x^2} + 5{y^2} = 32$
$3{x^2} + 5{y^2} = 25$
$3{x^2} + {y^2} = 4$
$3{x^2} + {y^2} = 9$
If two tangents drawn from a point $(\alpha, \beta)$ lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$ equals
A point on the ellipse, $4x^2 + 9y^2 = 36$, where the normal is parallel to the line, $4x -2y-5 = 0$ , is
A circle has the same centre as an ellipse and passes through the foci $F_1 \& F_2$ of the ellipse, such that the two curves intersect in $4$ points. Let $'P'$ be any one of their point of intersection. If the major axis of the ellipse is $17 $ and the area of the triangle $PF_1F_2$ is $30$, then the distance between the foci is :
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{16}+\frac {y^2} {9}=1$.
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the latus rectum of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$