Find the equation of the ellipse, whose length of the major axis is $20$ and foci are $(0,\,\pm 5)$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

since the foci are on $y-$ axis, the major axis is along the $y-$ axis. So, equation of the cllipse is of the form $\frac{x^{2}}{b^{2}}+\frac{y^{2}}{a^{2}}=1$

Given that

$a=$ semi-major axis $=\frac{20}{2}=10$

and the relation  $c^{2}=a^{2}-b^{2}$ gives

$5^{2}=10^{2}-b^{2} $ i.e., $b^{2}=75$

Therefore, the equation of the ellipse is

$\frac{x^{2}}{75}+\frac{y^{2}}{100}=1$

Similar Questions

The  the circle passing through the foci of the $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ and having centre at $(0,3) $ is

  • [JEE MAIN 2013]

If $P_1$ and $P_2$ are two points on the ellipse  $\frac{{{x^2}}}{4} + {y^2} = 1$ at which the tangents are parallel to the chord joining the points $(0, 1)$ and $(2, 0)$, then the distance between $P_1$ and $P_2$ is

  • [AIEEE 2012]

The line $x\cos \alpha + y\sin \alpha = p$ will be a tangent to the conic $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if

An arch is in the form of a semi-cllipse. It is $8 \,m$ wide and $2 \,m$ high at the centre. Find the height of the arch at a point $1.5\, m$ from one end.

Find the equation for the ellipse that satisfies the given conditions: Vertices $(\pm 6,\,0),$ foci $(\pm 4,\,0)$