The length of metallic wire is $l$. The tension in the wire is $T_1$ for length $l_1$ and tension in the wire is $T_2$ for length $l_2$. Find the original length.

  • [JEE MAIN 2021]
Vedclass pdf generator app on play store
Vedclass iOS app on app store

Increase in length under tension $\mathrm{T}_{1}=l_{1}-l$ Increase in length under tension $\mathrm{T}_{2}=l_{2}-l$ $\mathrm{Y}=\frac{\mathrm{T}_{1}}{\mathrm{~A}} \times \frac{l}{l_{1}-l}$ and $\mathrm{Y}=\frac{\mathrm{T}_{2}}{\mathrm{~A}} \times \frac{l}{l_{2}-l}$

Since material of wire is same hence $\mathrm{Y}$ is same.

$\therefore \frac{\mathrm{T}_{1}}{\mathrm{~A}} \times \frac{l}{l_{1}-l}=\frac{\mathrm{T}_{2}}{\mathrm{~A}} \times \frac{l}{l_{2}-l}$

$\therefore \mathrm{T}_{1}\left(l_{2}-l\right)=\mathrm{T}_{2}\left(l_{1}-l\right)$

$\therefore \mathrm{T}_{1} l_{2}-\mathrm{T}_{1} l=\mathrm{T}_{2} l_{1}-\mathrm{T}_{2} l$

$\therefore \mathrm{T}_{1} l_{2}-\mathrm{T}_{2} l_{1}=\left(\mathrm{T}_{1}-\mathrm{T}_{2}\right) l$

$\therefore l=\frac{\mathrm{T}_{1} l_{2}-\mathrm{T}_{2} l_{1}}{\mathrm{~T}_{1}-\mathrm{T}_{2}}$ or $\frac{\mathrm{T}_{2} l_{1}-\mathrm{T}_{l} l_{2}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}$

Similar Questions

Two metallic wires $P$ and $Q$ have same volume and are made up of same material. If their area of cross sections are in the ratio $4: 1$ and force $F_1$ is applied to $\mathrm{P}$, an extension of $\Delta l$ is produced. The force which is required to produce same extension in $Q$ is $\mathrm{F}_2$.The value of $\frac{\mathrm{F}_1}{\mathrm{~F}_2}$ is__________.

  • [JEE MAIN 2024]

Steel and copper wires of same length are stretched by the same weight one after the other. Young's modulus of steel and copper are $2 \times {10^{11}}\,N/{m^2}$ and $1.2 \times {10^{11}}\,N/{m^2}$. The ratio of increase in length

The following four wires are made of the same material. Which of these will have the largest extension when the same tension is applied?

  • [AIPMT 2013]

The area of a cross-section of steel wire is $0.1\,\,cm^2$ and Young's modulus of steel is $2\,\times \,10^{11}\,\,N\,\,m^{-2}.$  The force required to stretch by $0.1\%$ of its length is ......... $N$.

Explain with illustration cranes regarding the applications of elastic behaviour of materials.