9.Straight Line
normal

An equilateral triangle has each of its sides of length $6\,\, cm$ . If $(x_1, y_1) ; (x_2, y_2) \,\, and \,\, (x_3, y_3)$ are its vertices then the value of the determinant,${{\left| {\,\begin{array}{*{20}{c}}{{x_1}}&{{y_1}}&1\\{{x_2}}&{{y_2}}&1\\{{x_3}}&{{y_3}}&1\end{array}\,} \right|}^2}$ is equal to :

A

$192$

B

$243$

C

$486$

D

$972$

Solution

The area of a triangle having $\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) \;and\;\left(x_{3}, y_{3}\right)$ as its vertices is, $\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|=A($ let $)$

Now, $\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|^{2}=4 A^{2}$

The given triangle is equilateral and each side is of $6 \mathrm{cm}$. Then area $(A)=\frac{\sqrt{3}}{4} \times 6^{2}$

Then $4 A^{2}=4 \times \frac{3}{4^{2}} \times 36 \times 36=3 \times 9 \times 36=972$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.