Show that the area of the triangle formed by the lines
$y=m_{1} x+c_{1}, y=m_{2} x+c_{2}$ and $x=0$ is $\frac{\left(c_{1}-c_{2}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$.
Given lines are
$y=m_{1} x+c_{1}$.....$(1)$
$y=m_{1} x+c_{2}$.....$(2)$
$x=0$.....$(3)$
We know that line $y=m x+c$ meets the line $x=0$ ($y-$ axis) at the point $(0, c) .$ Therefore, two vertices of the triangle formed by lines $(1)$ to $(3)$ are $\left. P \left(0, c_{1}\right) \text { and } Q \left(0, c_{2}\right) \text { (Fig } .\right)$
Third vertex can be obtained by solving equations $( 1 )$ and $( 2 )$. Solving $(1)$ and $(2)$, we get
$x=\frac{\left(c_{2}-c_{1}\right)}{\left(m_{1}-m_{2}\right)}$ and $y=\frac{\left(m_{1} c_{2}-m_{2} c_{1}\right)}{\left(m_{1}-m_{2}\right)}$
Now, the area of the triangle is
$=\frac{1}{2} | 0\left(\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}-c_{2}\right)+\frac{c_{2}-c_{1}}{m_{1}-m_{2}}\left(c_{2}-c_{1}\right)+0\left(c_{1}-\frac{m_{1} c_{2}-m_{2} c_{1}}{m_{1}-m_{2}}\right)=\frac{\left(c_{2}-c_{1}\right)^{2}}{2\left|m_{1}-m_{2}\right|}$
Area of the rhombus bounded by the four lines, $ax \pm by \pm c = 0$ is :
Show that the path of a moving point such that its distances from two lines $3 x-2 y=5$ and $3 x+2 y=5$ are equal is a straight line.
Let $PS$ be the median of the triangle with vertices $P(2,\;2),\;Q(6,\; - \;1)$ and $R(7,\;3)$. The equation of the line passing through $(1, -1)$ and parallel to $PS$ is
The equations of two equal sides of an isosceles triangle are $7x - y + 3 = 0$ and $x + y - 3 = 0$ and the third side passes through the point $(1, -10)$. The equation of the third side is