પરિમાણરહિત રાશી $P$ ને સમીકરણ $P =\frac{\alpha}{\beta} \log _{ e }\left(\frac{ kt }{\beta x}\right)$ થી આપવામાં આવે છે; જ્યાં $\alpha$ અને $\beta$ અચળાંકો, $x$ એ અંતર; $k$ એ બોલ્ટઝમાન અચળાંક અને $t$ એ તાપમાન છે, $\alpha$ નું પરિમાણ ............. થશે.

  • [JEE MAIN 2022]
  • A
    $[ M ^{0} L ^{-1} T ^{0} ]$
  • B
    $[ ML ^{0} T ^{-2}]$
  • C
    $[ MLT ^{-2}]$
  • D
    $[ ML ^{2} T ^{-2}]$

Similar Questions

$K$ બળ અચળાંક ધરાવતી સ્પિંગ્ર પર $m$ દળ લટકાવીને દોલનો કરાવતા આવૃત્તિ $ f = C\,{m^x}{K^y} $ સૂત્ર મુજબ આપવામાં આવે છે, જ્યા $C$ એ પરિમાણરહિત રાશિ છે. $x$ અને $y $ ના મૂલ્યો કેટલા હશે? 

  • [AIPMT 1990]

પ્લાન્ક અચળાંક $ (h),$ શૂન્યાવકાશમાં પ્રકાશની ઝડપ $c$ અને ન્યુટનનો ગુરુત્વાકર્ષી અચળાંક $(G) $ એમ ત્રણ મૂળભૂત અચળાંકો છે. નીચેનામાંથી કયુ સંયોજન લંબાઇના પરિમાણ જેવુ છે?

  • [NEET 2016]

જો ઉર્જા $(E)$, વેગ $(V)$ અને સમય $(T)$ ને મૂળભૂત રાશિઓ તરીકે લેવામાં આવે, તો પૃષ્ઠતાણનું પારિમાણિક સૂત્ર શું થશે?

  • [AIEEE 2012]

જો પ્રકાશના વેગ $c$, પ્લાન્ક અચળાંક $h$ અને ગુરુત્વાકર્ષી અચળાંક $ G$ ને મૂળભૂત રાશિઓ તરીકે લેવામાં આવે તો દ્રવ્યમાન, લંબાઈ અને સમયને આ ત્રણ રાશિઓમાં દર્શાવતા સૂત્રો મેળવો. 

આઇન્સ્ટાઇનના પ્રખ્યાત સાપેક્ષવાદને આધારે દળ $(m)$ એ ઊર્જા $(E)$ સાથે $E = mc^2$ સંબંધથી સંકળાયેલ છે.

જ્યાં $c =$ શૂન્યાવકાશમાં પ્રકાશનો વેગ છે. ન્યુકિલયર ઊર્જાનું મૂલ્ય સૂક્ષ્મ હોય અને તે $Mev$ માં મપાય છે. જ્યાં $1\,MeV = 1.6\times 10^{-13}\,J$ ; જેમાં દ્રવ્યમાન (એટોમિક માસ યુનિટ) $amu$ માં મપાય છે તથા $1\,u = 1.67 \times 10^{-27}\, kg$.

$(a)$  $1\,u = 931.5\, MeV$ મેળવો.

$(b)$ એક વિધાર્થીએ $1\,u = 931.5\, MeV$ લખ્યો છે જે પારિમાણિક દૃષ્ટિએ ખોટો હોવાનું શિક્ષકે કહ્યું છે તો સાચો સંબંધ લખો.