एक विमाहीन राशि $P$ के लिये व्यंजक $P =\frac{\alpha}{\beta} \log _{ e }\left(\frac{ kt }{\beta x }\right)$ द्वारा दिया जाता है, जहाँ $\alpha$ तथा $\beta$ नियतांक है, $x$ दूरी एवं $k$ बोल्ट्जमान नियतांक है तथा $t$ तापमान है, तो राशि $\alpha$ की विमाएँ होगी :

  • [JEE MAIN 2022]
  • A
    $[ M ^{0} L ^{-1} T ^{0} ]$
  • B
    $[ ML ^{0} T ^{-2}]$
  • C
    $[ MLT ^{-2}]$
  • D
    $[ ML ^{2} T ^{-2}]$

Similar Questions

यदि बल $( F )$, वेग $( v )$ तथा समय $( T )$ को मूल मात्रक मान लिया जायेतो, द्रव्यमान की विमायें होंगी

  • [AIPMT 2014]

एक दृढ़ घन $A$ का द्रव्यमान $M$ एवं इसकी प्रत्येक भुजा की लम्बाई $L$ है, यह एकसमान विमा के, दूसरे कम दृढ़ता गुणांक $(\eta )$ वाले घन $ B$ के ऊपर इस प्रकार से स्थित है कि $A$ का निचला पृष्ठ $B$ के ऊपरी पृष्ठ को पूरी तरह ढ़क लेता है। $B$ की निचली सतह दृढ़ता से क्षैतिज सतह पर स्थित है। एक अल्प परिमाण का बल $F,\,A$ की एक सतह पर लम्बवत् लगाया जाता है। बल को हटाने पर $A$ छोटे दोलन करने लगता है जिसका आवर्तकाल दिया जाता है

  • [IIT 1992]

$\frac{ B ^{2}}{2 \mu_{0}}$, जहाँ $B$ चुम्बकीय क्षेत्र है और $\mu_{0}$ निर्वात की चुम्बकीय पागम्यता है, की विमायें हैं।

  • [JEE MAIN 2020]

निम्नलिखित में से कौन सी राशि विमा विहीन है?

  • [JEE MAIN 2021]

एक ट्यूब की लम्बाई $\ell$ तथा त्रिज्या $r$ है। इसमें टॉरपीन का तेल बहता है। ट्यूब के दोनों सिरों का दाबान्तर $p$ है तथा श्यानता गुणांक है

$\eta=\frac{p\left(r^{2}-x^{2}\right)}{4 v l}$

जहाँ ट्यूब के अक्ष से $x$ दूरी पर तेल का वेग $v$ है। $\eta$ की विमायें हैं

  • [AIPMT 1993]