11.Thermodynamics
normal

An ideal gas is expanding such that $PT^2$ = constant. The coefficient of volume expansion of the gas is :-

A

$1/T$

B

$2/T$

C

$3/T$

D

$4/T$

Solution

આદર્શ વાયુ માટે $PV = \mu RT$

$\therefore \,\,P\,\, = \,\,\frac{{\mu RT}}{V}$ તથા $\,P{T^2} = \,$ અચળ $\,\therefore \,\,\,\frac{{\mu RT}}{V}\,\,.\,\,{T^2}\,\, = $અચળ ${\text{ =  k}}$

$\therefore \mu RT^{3} = kV   … (1)$   $\therefore \mu R(3T^{2}dT) = kdV      … (2) $

સમીકરણ $(2)$ ને $(1)$ વડે ભાગતા $\therefore \,\,\frac{{3\mu R{T^2}dT}}{{\mu R{T^3}}}\, = \,\,\frac{{kdV}}{{kV}}\,\,\,\,\,\therefore \,\,\frac{{3dT}}{T}\,\, = \,\,\frac{{dV}}{V}\,\,\,\,\,\therefore \,\,\frac{{dV}}{{VdT}}\,\, = \,\gamma \,\, = \,\,\frac{3}{T}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.