An infinite line charge produces a field of $9 \times 10^4 \;N/C$ at a distance of $2\; cm$. Calculate the linear charge density in $\mu C / m$
$36$
$25$
$20$
$10$
Consider a uniform spherical charge distribution of radius $R_1$ centred at the origin $O$. In this distribution, a spherical cavity of radius $R_2$, centred at $P$ with distance $O P=a=R_1-R_2$ (see figure) is made. If the electric field inside the cavity at position $\overrightarrow{ r }$ is $\overrightarrow{ E }(\overrightarrow{ r })$, then the correct statement$(s)$ is(are) $Image$
Consider a metal sphere of radius $R$ that is cut in two parts along a plane whose minimum distance from the sphere's centre is $h$. Sphere is uniformly charged by a total electric charge $Q$. The minimum force necessary to hold the two parts of the sphere together, is
There is a solid sphere of radius $‘R’$ having uniformly distributed charge throughout it. What is the relation between electric field $‘E’$ and distance $‘r’$ from the centre ( $r$ is less than R ) ?
A spherically symmetric charge distribution is considered with charge density varying as
$\rho(r)=\left\{\begin{array}{ll}\rho_{0}\left(\frac{3}{4}-\frac{r}{R}\right) & \text { for } r \leq R \\ \text { Zero } & \text { for } r>R\end{array}\right.$
Where, $r ( r < R )$ is the distance from the centre $O$ (as shown in figure). The electric field at point $P$ will be.
Two infinite planes each with uniform surface charge density $+\sigma$ are kept in such a way that the angle between them is $30^{\circ} .$ The electric field in the region shown between them is given by