A sphere of radius $R$ has a uniform distribution of electric charge in its volume. At a distance $x$ from its centre, for $x < R$, the electric field is directly proportional to

  • [AIIMS 1997]
  • A

    $\frac{1}{{{x^2}}}$

  • B

    $\frac{1}{x}$

  • C

    $x$

  • D

    ${x^2}$

Similar Questions

Three infinitely long charged thin sheets are placed as shown in figure. The magnitude of electric field at the point $P$ is $\frac{x \sigma}{\epsilon_0}$. The value of $x$ is_____. (all quantities are measured in $SI$ units).

  • [JEE MAIN 2024]

Two infinite planes each with uniform surface charge density $+\sigma$ are kept in such a way that the angle between them is $30^{\circ} .$ The electric field in the region shown between them is given by

  • [JEE MAIN 2020]

Obtain Gauss’s law from Coulomb’s law.

An infinite line charge produces a field of $9 \times 10^4 \;N/C$ at a distance of $2\; cm$. Calculate the linear charge density in $\mu C / m$

The region between two concentric spheres ofradii '$a$' and '$b$', respectively (see figure), have volume charge density $\rho = \frac{A}{r}$ where $A$ is a constant and $r$ is the distance from the centre. At the centre of the spheres is a point charge $Q$. The value of $A$ such that the electric field in the region between the spheres will be constant, is :

  • [JEE MAIN 2016]