An insulator plate is passed between the plates of a capacitor. Then the displacement current
First flows anticlockwise and then clockwise
First flows clockwise then anticlockwise
Always flows clockwise
Always flows anticlockwise
Explain the difference in the behaviour of a conductor and dielectric in the presence of external electric field.
A parallel plate capacitor Air filled with a dielectric whose dielectric constant varies with applied voltage as $K = V$. An identical capacitor $B$ of capacitance $C_0$ with air as dielectric is connected to voltage source $V_0 = 30\,V$ and then connected to the first capacitor after disconnecting the voltage source. The charge and voltage on capacitor.
Due to which the surface charge density arises on the surface of a dielectric slab, when it is placed in a uniform electric field ?
A capacitor has air as dielectric medium and two conducting plates of area $12 \mathrm{~cm}^2$ and they are $0.6 \mathrm{~cm}$ apart. When a slab of dielectric having area $12 \mathrm{~cm}^2$ and $0.6 \mathrm{~cm}$ thickness is inserted between the plates, one of the conducting plates has to be moved by $0.2 \mathrm{~cm}$ to keep the capacitance same as in previous case. The dielectric constant of the slab is : (Given $\left.\epsilon_0=8.834 \times 10^{-12} \mathrm{~F} / \mathrm{m}\right)$
A parallel plate capacitor of capacitance $12.5 \mathrm{pF}$ is charged by a battery connected between its plates to potential difference of $12.0 \mathrm{~V}$. The battery is now disconnected and a dielectric slab $\left(\epsilon_{\mathrm{r}}=6\right)$ is inserted between the plates. The change in its potential energy after inserting the dielectric slab is_______.$\times 10^{-12} \mathrm{~J}$.