With the rise in temperature, the dielectric constant $K$ of a liquid
Increases
Decreases
Remains unchanged
Charges erratically
A source of potential difference $V$ is connected to the combination of two identical capacitors as shown in the figure. When key ' $K$ ' is closed, the total energy stored across the combination is $E _{1}$. Now key ' $K$ ' is opened and dielectric of dielectric constant 5 is introduced between the plates of the capacitors. The total energy stored across the combination is now $E _{2}$. The ratio $E _{1} / E _{2}$ will be :
A parallel plate condenser is immersed in an oil of dielectric constant $2$. The field between the plates is
When a dielectric material is introduced between the plates of a charges condenser, then electric field between the plates
A parallel plate capacitor has capacitance $C$. If it is equally filled with parallel layers of materials of dielectric constants $K_1$ and $K_2$ its capacity becomes $C_1$. The ratio of $C_1$ to $C$ is
Four identical plates $1, 2, 3$ and $4$ are placed parallel to each other at equal distance as shown in the figure. Plates $1$ and $4$ are joined together and the space between $2$ and $3$ is filled with a dielectric of dielectric constant $k$ $=$ $2$. The capacitance of the system between $1$ and $3$ $\&$ $2$ and $4$ are $C_1$ and $C_2$ respectively. The ratio $\frac{{{C_1}}}{{{C_2}}}$ is