The parallel combination of two air filled parallel plate capacitors of capacitance $C$ and $nC$ is connected to a battery of voltage, $V$. When the capacitor are fully charged, the battery is removed and after that a dielectric material of dielectric constant $K$ is placed between the two plates of the first capacitor. The new potential difference of the combined system is

  • [JEE MAIN 2019]
  • A

    $\frac{V}{{K + n}}$

  • B

    $V$

  • C

    $\frac{{\left( {n + 1} \right)\,V}}{{\left( {K + n} \right)}}$

  • D

    $\frac{{nV}}{{K + n}}$

Similar Questions

Separation between the plates of a parallel plate capacitor is $d$ and the area of each plate is $A$. When a slab of material of dielectric constant $k$ and thickness $t(t < d)$ is introduced between the plates, its capacitance becomes

A parallel plate capacitor with air between the plates has a capacitance of $9\,pF$. The separation between its plates is $'d'$. The space between the plates is now filled with two dielectrics. One of the dielectrics has dielectric constant $K_1=3$ and thickness $\frac {d}{3}$ while the other one has dielectric constant $K_2 = 6$ and thickness $\frac {2d}{3}$ . Capacitance of the capacitor is now........$pF$

Explain polarisation of polar molecule in uniform electric field.

Write the capacitance of parallel plate capacitor with medium of dielectric of dielectric constant $\mathrm{K}$.

A capacitor of $10 \mu \mathrm{F}$ capacitance whose plates are separated by $10 \mathrm{~mm}$ through air and each plate has area $4 \mathrm{~cm}^2$ is now filled equally with two dielectric media of $\mathrm{K}_1=2, \mathrm{~K}_2=3$ respectively as shown in figure. If new force between the plates is $8 \mathrm{~N}$. The supply voltage is . . . .. . .V.

  • [JEE MAIN 2024]