- Home
- Standard 11
- Physics
4-1.Newton's Laws of Motion
normal
An iron sphere weighing $10\, N$ rests in a $V$ shaped smooth trough whose sides form an angle of $60^o$ as shown in the figure. Then the reaction forces are

A
$R_A = 10 N$ & $R_B = 0$ in case $(i)$
B
$R_A = 10 \,N$ & $R_B = 10\, N$ in case $(ii)$
C
$R_A = \frac{{20}}{{\sqrt 3 }} N$ & $R_B = \frac{{10}}{{\sqrt 3 }} N$ in case $(iii)$
D
All of the above
Solution

since the sphere is not moving $\sum F_{H}=0$
$R_{B} \sin 60=0$
$\therefore R_{B}=0$
$\& R_{A}=W=10 N$
$\sum F_{H}=0$
$\therefore R_{A} \sin 60=R_{B} \sin 60 \Rightarrow R_{A}=R_{B}=R$
Now $\sum F_{U}=0 \therefore 2 R \cos 60-W=0$
$R=W=10 N$
$\sum F v=0 \therefore R_{A} \sin 60=W$
$\Rightarrow R_{A}=\frac{20}{\sqrt{3}} N$ also $\sum F_{H}=0$
$R_{\frac{A}{2}}-R_{B}=0$ So $R_{B}=\frac{10}{\sqrt{3}} N$
Standard 11
Physics
Similar Questions
medium