An isolated solid metallic sphere is given $ + Q$ charge. The charge will be distributed on the sphere
Uniformly but only on surface
Only on surface but non-uniformly
Uniformly inside the volume
Non-uniformly inside the volume
Consider three point objects $P, Q$ and $R \cdot P$ and $Q$ repel each other, while $P$ and $R$ attract. What is the nature of force between $Q$ and $R$ ?
Electric charges of $1\,\mu C,\, - 1\,\mu C$ and $2\,\mu C$ are placed in air at the corners $A$, $B$ and $C$ respectively of an equilateral triangle $ABC$ having length of each side $10 \,cm$. The resultant force on the charge at $C$ is......$N$
An infinite number of charges, each of charge $1 \,\mu C$ are placed on the $x$-axis with co-ordinates $x = 1, 2,4, 8, ....\infty$. If a charge of $1\, C$ is kept at the origin, then what is the net force acting on $1\, C$ charge....$N$
Two identical conducing spheres having unequal positive charges $q_1$ and $q_2$ separated by distance $r$. If they are made to touch each other and then separated again to the same distance. The electrostatic force between the spheres in this case will be (neglect induction of charges)
An electron is moving round the nucleus of a hydrogen atom in a circular orbit of radius $r$. The coulomb force $\overrightarrow F $ between the two is (Where $K = \frac{1}{{4\pi {\varepsilon _0}}}$)